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In a non-vertical borehole light particles tend to rise towards the upper side of the 
borehole. The resulting non-uniform density distribution tends to induce an upwards 
contribution to the longitudinal flow along that upper side of the flow, with a 
compensating downflow elsewhere. On average the particles experience an extra 
upflow proportional to the cross-sectionally averaged concentration of particles. 
Mathematically this concentration-related change of speed corresponds to the 
nonlinearity of the Burgers equation. Such is the strength of the buoyancy effect that 
in realistic flow conditions the Burgers nonlinearity can be significant for particle 
volume fractions of only one part per thousand. 

1. Introduction 
Two-phase flows are ubiquitous in the oil drilling industry. In the early stages of 

drilling the flow of fluid conveys particles of crushed rock. At  later stages there can 
be gas bubbles or oil droplets. It is almost inevitable that there will be density 
differences between the drilling fluid and the particles, bubbles or droplets. So, the 
flow can be changed by the presence of the conveyed material and the conveyed 
material need not travel at  the same rate as the drilling fluid. As gases rise from 
several kilometers deep, they expand by factors of several hundreds. The devastating 
effect of blowouts stems from the uncontrolled escalation of the upwards buoyancy 
forces. This paper focuses attention upon the first, most gentle, effects of buoyancy 
upon the distribution of dilute particles or bubbles along a non-vertical borehole. 

For a non-buoyant solute in a parallel flow Taylor (1953) drew attention to the 
way that the non-uniform velocity distorts and stretches a region of marked fluid. He 
showed that the eventual longitudinal evolution of the cross-sectionally averaged 
concentration ~ ( z ,  t )  is diffusive : 

(1.1) 

The shear dispersion coefficient Do depends both upon mixing across the flow and 
upon the non-uniformity (shear) of the velocity profile w(z,  y). Usually the molecular 
(or turbulent) diffusivity K is negligible relative to Do. For dilute suspensions of rising 
or sinking particles Giddings (1968) showed that the same type of model equation 
remains valid. However, the effective longitudinal velocity wo and the shear 
dispersion coefficient Do involve particle-weighted averaged across the flow, so are 
modified by longitudinal and transverse drift. 

The classical paper on buoyancy effects was written by Erdogan & Chatwin (1967). 
They showed that for solutes the longitudinal velocity wo remained unchanged. 
However, there is a transverse (or secondary) flow proportional to the density 

a, F+ wo a, F- (K+ D,) a: F = 0. 
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gradient, which augments mixing across the flow and results in a nonlinear shear 
dispersion coefficient : 

(1.2) 

For horizontal flows the odd coefficients D,, . . . are zero (Erdogan & Chatwin 1967). 
In the present paper we find that for a dilute suspension of rising particles in an 

inclined flow the first, most gentle, effects of buoyancy are evidenced in a perturbed 
longitudinal velocity : 

a, C+ w , a , ~ - a , [ ~ + ~ o  +D, a,~+o,(a,q2+. . .I a , ~  = 0. 

a, F+ [w,, +w, CI a,c- [ K + D ~ I  a: c = 0. (1.3) 

Light particles on the upper side of the flow tend to give an upwards contribution to 
the longitudinal flow experienced by the particles. Physically this is related to the 
mechanism that causes suspended material to settle out most rapidly in a tilted 
container (Herbolzheimer & Acrivos 1981). In practice the velocity perturbation 
w1 F can be substantial for particle volume fractions of only one part per thousand. 
For solutes or for non-tilted flows there is no asymmetric buoyancy effect and the 
nonlinear perturbation coefficient w1 is zero. Equation (1.3) is a Burgers (1948) 
equation. To obtain solutions for the longitudinal concentration ~ ( z ,  t )  we can take 
advantage of the elegant solution technique developed by Hopf (1950) and Cole 
(1951). 

2. Flow and mixing in a narrow gap 
The geometry of boreholes is typically annular (see figure 1). There is an off-centre 

cylindrical shaft which contains the downflow of drilling fluid. The return flow, 
conveying bubbles or particles, occupies the outer annulus. We denote the mean gap 
width by H and the mean gap radius by a. In  practice the ratio H l a  is about 0.4. 

In  view of the fact that the ratio H l a  is not particularly small, many analyses 
pertaining to boreholes contend with the full complexity of the off-centre eccentric 
annular geometry (Snyder & Goldstein 1965 ; Sankarasubramanian & Gill 1971 ; 
Muller & Bittleston 1992). However, the errors incurred by making a narrow-gap 
approximation (and regarding the flow as being locally planar) are of order (Hla),. 
Indeed, Smith (1990b, equations @.lo), (8.11)) shows that for solute dispersion the 
narrow-gap approximation yields a shear dispersion coefficient Do within 10% of the 
exact values computed by Sankarasubramanian & Gill (1971) for three different off- 
centre geometries all with H l a  = 0.4. Accordingly, the present work takes advantage 
of the narrow-gap approximation. 

If we make the Boussinesq approximation (that for dilute suspensions changes in 
mass of the fluid are negligible but that changes in weight are important), then the 
equation for the conservation of mass can be averaged across the narrow gap to give 

Here h(O,z , t )  is the gap width, ( 8  the angle around the shaft measured from its 
horizontal diameter), v(8, z ,  t )  the velocity component around the shaft, and w(8, z ,  
t )  the axial velocity. The illustrative examples given in this paper concern the gap 
geometries (see figure 2) 

h(8;  B ,  0) = H (  1 - E cos (0- O)), (2.2) 
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FIQURE 1.  Sketch showing an off-centre drilling shaft in a non-vertical borehole. The line 8 = 0 
is horizontal and the angle $ measures the deviation from vertical of the z-axis. 

e = &  

e=o 

e = $  

FIGURE 2. The cross-section of an off-centre drilling shaft with fractional offset E = 0.5 and 
narrowest gap at the angle 8 = in. The mean gap width is H and the mean gap radius is a. 

where E is the fractional offset and 8 is the position of minimum gap. In figures 1, 
2, 5 and 7 the minimum gap is at  the bottom, 8 = $r, and the fractional offset has 
the value E = 0.5. 

For ease of exposition the flow will be calculated as if it were laminar. Smith 
(1990~)  shows in detail how the corresponding calculations for solutes can be adapted 
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to turbulent flows. When averaged cross the narrow gap, the momentum equations 
for laminar flow take the lubrication theory form (Schlichting 1955, section 6) :  

-asp 1 = -12-(v-~Qu)--cosOsin$, V P’S 
UP0 h2 Po 

-azp 1 = - i~-uu , - -~os~.  v P’9 
Po h2 Po 

( 2 . 3 ~ )  

(2.3b) 

Here po is the reference density of the drilling fluid, p(O,z,t) the excess pressure 
(above reference hydrostatic), v the kinematic viscosity, 52 the angular velocity of the 
drilling shaft, p’(0, z,  t )  the density perturbation, g the gravitational acceleration, and 
q5 is the angle between the borehole axis and vertical. The effect of shaft rotation has 
been investigated by Smith (1990 b) .  So, to avoid undue duplication, attention in the 
present paper is restricted to a stationary shaft (Q = 0). 

We shall assume that the (very small) density perturbation p’ is directly 
proportional to the volume fraction c(O, z, t )  of particles (or bubbles) in the flow : 

p’ = -acpo, (2.4) 

where a is positive for a buoyant substance. On the hypothesis that the suspension 
of particles (or bubbles) is very dilute, we shall ignore any corresponding (very small) 
perturbations in the viscosity or diffusivity. 

The narrow-gap equation for c(0, z, t )  differs from that for solutes in the presence 
of axial and transverse components of the vertical rise velocity W :  

(2.5a) 

with V = Wsinq5, W = Wcos$. (2.5b, c) 

Here K~ and K~ are the effective circumferential and axial diffusivities for the particles 
(or bubbles) and DJO) is the local longitudinal shear dispersion coefficient associated 
with velocity differences across the gap. For unidirectional laminar flow Bugliarello 
& Jackson (1964) derived the result 

h2w2 
D,, = w$ where K~ = K~ = K ~ .  

For turbulent flows the eddy diffusivity K* is proportional to hw (with coefficient of 
about 0.006). So, the shear dispersion coefficient D,, is likewise proportional to hw but 
with a much larger coefficient (Elder 1959). Non-uniformity around the gap of the 
longitudinal velocity w gives rise to a longitudinal shear dispersion coefficient E that 
can greatly exceed D,, (Sankarasubramanian & Gill 1979). 

As a consequence of buoyancy (or rotation of the drilling shaft) the flow is not 
unidirectional. There should be additional transverse D, and skew Do, = D,, 
dispersion terms in ( 2 . 5 ~ ) .  However, as was shown for solutes by Smith (1990b), 
these additional terms are negligible for rapid rotation except when the total 
longitudinal dispersion coefficient is dominated by K ~ + D ~ , ,  and so Do, or Do, = D,, 
can be neglected. Here the limiting process of strong buoyancy is different from the 
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limiting process of strong rotation, but the same conclusion holds. To foreshorten the 
mathematical analysis (and again avoiding replication of the work of Smith 1990b), 
the D, and D ,  = D,, and terms have been neglected in ( 2 . 5 ~ ) .  

Strictly, for polydisperse particles there should be a spectrum of particle 
diffusivities K ~ ,  relative densities a, and drift velocity components V ,  W. The total 
density perturbation (2.4) would then involve integration over the full spectrum. The 
final outcome would be evolution equations for different parts of the spectrum with 
nonlinear (buoyant) coupling. The nonlinearity is most dramatic in the limiting case, 
considered here, of monodisperse particles. For concentrated suspensions a further 
complication would be that the Brownian diffusivity can be greatly augmented by 
shear-induced diffusion (Leighton & Acrivos 1987). 

3. Moving stretched coordinate system 
The Taylor (1953) limit concerns the eventual longitudinal dispersion process far 

up the borehole. In this limit the concentration distribution has become greatly 
elongated in the axial z-direction. For simplicity we shall assume that the gap width 
h(0) varies neither with axial position z nor with time t .  Thus, to a first approximation 
the concentration distribution will be carried along at a constant velocity wo. For a 
solute this velocity is necessarily the cross-sectionally averaged longitudinal velocity 
m. However, for rising or sinking particles wo needs to be determined. 

We introduce a small parameter 6 that characterizes the ratio of diameter to axial 
length in the Taylor regime. In terms of 6 we define a moving stretched coordinate 
system. 

6 = S(z-wot), 7 = 62t. (3.la, b )  

The rescaled version of the advectiondiffusion equation ( 2 . 5 ~ )  is 

1 
62ha,c+-a,(h[v+ Vcos19]c)+Sh[w+ W - ~ , ] ~ ~ c + 6 h c ~ ~ w  

a 

1 
a2 = -a (hK2 a, c) + a2 ac(h[K3 + D,,] a@. (3.2) 

It is the order-S2 terms in this equation that are eventually used in determining the 
slow-time evolution of the concentration distribution. 

Since the flow is modified by buoyancy, we have to decide upon the &scaling of the 
gravitational terms in the momentum equations (2.3a, b ) .  From the w-terms in (3.2), 
we see that it only needs an order-6 perturbation to w for the slow-time evolution to 
be changed. Correspondingly, we take the gravitational terms in (2.3a, b )  to be order- 
6 relative to the drag terms: 

1 V 
-8,p = -12-v++caqcosOsinq5, 
adPo ha 

1 V 
--asp = -12~w+Gcagcos#. 
P O  

(3 .3a)  

(3.3b) 

The comparatively large scaling for the excess pressure (above reference hydrostatic) 
is a consequence of the assumed great length of the borehole. We remark that for 
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solutes it requires stronger gravitational terms to influence the shear dispersion 
process (recall the comparison between (1.2) and (1.3)). 

For completeness, we note that in the moving stretched coordinate system the 
mass conservation equation (2.1) now becomes 

1 
-a&h'U) + 6h aC w = 0. 
a (3.4) 

An important consequence is that the cross-sectionally averaged velocity a is 
constant. For solutes this implies that the Burgers nonlinearity w1 is zero and any 
buoyancy effects must be evidenced in some other way (Erdogan & Chatwin 1967) 
and with a different S-scaling. 

4. Formal series expansions 
To solve (3.2)-(3.4) we pose the regular power series expansions 

c = c(0) + Sc(1) + S Z C ( 2 )  + . . . , 
2, = v(0) + Sd') + P W ( 2 )  + . . . , 

p = p(0) + + S 2 p '  + . . . , 
w = w(0) + Sw(') + SZW(2) + . . . . 

(4.la,  b )  

(4.1 c ,  a?) 

We introduce the notation (. . .) to  denote &averages, e.g. 

1 
( h )  = Gs hdB. 

0 

Overbars denote cross-sectional average values, e.g. 

At leading order the velocity components for laminar constant-viscosity flows are 
unaffected by buoyancy (see figure 3) : 

(4.4a, b )  

We can regard the constant mean axial velocity a as being given in terms of the total 
mass flux of drilling fluid going up the borehole. The corresponding pressure excess 
(above reference hydrostatic) takes the form 

asp(l) = 0. (4.5a, b )  

Here the moving coordinate 5 has been replaced by the stationary axial coordinate 
z. The term z0(7) denotes a reference level which will depend on the detailed flow near 
the top of the borehole. 

We record that the longitudinal component of the shear dispersion tensor has the 
value 
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FIQURE 4. Local longitudinal dispersion coefficient D,, for a non-uniform annular gap with narr- 
owest position at  the angle 8 = t x  with different values of the fractional offset E .  

e 

Thus, it is regions of wide gap with relatively fast longitudinal flow that exhibit rapid 
longitudinal spreading in the early stages of the shear dispersion process (see figure 
4). At leading order the concentration equation (3.2) has the solution 

(4.7a) cO(O, s, 7) = qs, 7 )  y(0 ;  V ) ,  
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2.0 - 

- 

va/K, = 1.5 
... . .  . .  . .  - . .  

where (4.7b, c) 

The function y ( 6 ;  V )  describes the equilibrium distribution of a dilute suspension of 
particles when there is a balance between the effects of rise and of diffusion. For a 
laminar flow with constant K~ the solution for y can be written 

(h) exp [(uVIK,) sin61 
y ( e ; V )  = (hexp[(aV/~,)sin8]) 

(see figure 5). Essentially y ( 6 ;  V )  is a function of vertical position. The precise 
geometry of the gap (as characterized by the fractional offset E and the angle 8 at 
minimum width) only modifies the normalization factor in the denominator. 

As a quantitative illustration of realistic borehole conditions we give the 
(turbulent) flow specifications : 

mean radius a = 100 mm, mean gap H = 40 mm, (4.9a, b)  

particle rise velocity W = 5 mm s-l, (4.9c, d )  

circumferential mixing K~ = 100 mm2 s-', (4.9e,f) 

bulk velocity ii~ = 100 mm s-', 

across-gap mixing K' = 25 mm2 s-l, 

eddy viscosity v = 25 mm2 s-l. (4.9g) 

The rise velocity W corresponds to gas bubbles of radius 0.05 mm with a dirty 
surface in water. For solid particles of the same size and with a density twice that of 
water the rise velocity W would have reversed sign. If the borehole is inclined at an 
angle q5 of 12' from the vertical, then the rise velocity component V across the 
borehole has the value 

V =  l m m  s-'. (4.9h) 

i t  is the magnitude of the combination a V / K ~  that determines the non-uniformity of 
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the particle distribution around the shaft. The specification ( 4 . 9 ~ - h )  was selected to 
give round numbers: 

aV/K, = 1 .  (4.9i) 

5. First-order solutions 
The equation for c(') is 

A necessary condition for a periodic solution to  exist is that  the forcing terms have 
zero &average. This condition enables us to evaluate the velocity w,  of the moving 
frame of reference: - 

wo = yw'0' + w. (5 .2)  

I n  any other frame of reference there is not the hypothesized slow-time evolution of 
E. The two contributions to  wo are a particle-weighted average of the axial flow yw" 
and the axial component W of the rise velocity. If the gap is narrowest at the bottom 
(0 = gn), as illustrated in figure 1, the buoyant particles can move along the borehole 
much faster than the mean flow velocity i ~ .  Indeed, for the flow specification ( 4 . 9 ~ 4 )  
we can estimate that wo = 130 mm s-l whereas zz = 100 mm s-l. Conversely, if the 
gap is narrowest at the top (0 = in), the buoyant particles move relatively slowly 
(see figure 6), and we obtain the estimate wo = 75 mm s-l. 

The buoyancy terms in the momentum equations (3.3u, b )  give rise to  the first- 
order velocity corrections 

(5.3c) 

(5 .3d)  

The buoyancy-driven circumferential velocity v(') is related to any asymmetry in the 
particle distribution around the annular gap. Such asymmetry is absent when there 
is no rotation (see (4.8)). For the axial buoyancy-driven flow w(') there is an  upwards 
contribution where the normalized particle fraction y(0) of buoyant particles exceeds 
the flux-weighted average ( y h 3 ) / ( h 3 ) ,  with a downwards contribution elsewhere. 
The buoyancy correction a,p(l) to the pressure gradient ensures that w(') does not 
modify the total mass flux of drilling fluid going up the borehole. 

Since TI(') is zero, we can infer from (5.1) that  the perturbation concentration c(') 
can be represented 

where the centroid displacement function f(0; V )  satisfies the equation 

Y f  a< F? (5.4) c(') = - 

1 --a (hyK2ae f )  = [w(O)-yw'O']yh 
a2 ' ( 5 . 5 ~ )  

(5 .5b)  
- 

with yf = 0. 
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0 0 . 5 ~  1 .On 1.5x 2.0x 
8 

FIQURE 6. Particle-weighted longitudinal velocity yw(O) of monodisperse particles in a non-uniform 
annular gap with fractional offset E = 0.5 for different values of the particle rise velocity V .  If the 
narrowest gap coincides with where the particles accumulate (0 = in) then the effective velocity has 
a minimum. 

- 

0.5 1 Va/K, = 0.5 F 

0 

fKP 
wa 

-0.5 

- 1.0 

0 0.5n 1.on 1.5n 2.0n 

FIQURE 7. Centroid displacement f of monodisperse particles in a non-uniform annular gap with 
fractional offset E = 0.5, and narrowest gap a t  the angle 8 = in, for different values of rise velocity 
V. 

e 

If the gap width h(0)  is non-uniform, then there is an upwards displacement of the 
concentration distribution where the gap is widest and the axial flow is fastest. To 
satisfy the normalization (5.5 b )  there is a compensating downwards displacement 
where the gap is narrow and the flow is slow (see figure 7).  For the flow specification 
( 4 . 9 ~ 4 )  the centroid displacement f has magnitude m a 2 / K ,  = 10 m. 
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For laminar flow with K~ constant, a first integral of equation ( 5 . 5 ~ )  is 

$ K 2 a ,  f = J ( 8 ;  V)tij(h), ( 5 . 6 ~ )  

with 

The &averaged constant term in the definition (5.66) of J ensures that the integral 
a, f around the gap is zero. To perform the second integration it is convenient for us 
to introduce a partition of unity 

u-+u+ = 1 .  (5.7c) 

The weight factor hy in the integrals (5 .7a,  b )  is related to the required normalization 
(5.5b) off. The solution for f(0; V )  is 

.zf = m 1  (h)% J(0'; V )  dB'-m 
a2 hY 

6. Longitudinal dispersion equation 
The &average of the rescaled advection-diffusion equation (3.2) is 

S2aT(hc)+SaS(h[~+  W - W , ] C )  = S 2 a ( ; ( h [ ~ 3 + D , , ] a , ~ ) .  (6.1) 

The selection of the velocity wo for the moving frame of reference (5.2), removes the 
terms of order 8. The terms of order S2 yield an evolution equation for ~ ( 5 ,  T )  : 

(6 .2)  ( h )  ~ 7 ~ + ~ , ( ( h y w " ) ) ~ + a , ( h [ w ' o ) - ~ ]  d ' ) )  = ( h y [ ~ ~ + D $ : ) ] )  ate. 
If we use ( 5 . 3 ~ )  for and (5.4) for dl), then this evolution equation (6.2) for Fcan 

be written as a Burgers (1948) equation : 
- 

aTF+wl Fa, F = [%+ y ~ g )  + E I  a; F, (6 .3a)  

with (6.3b) 

1 1 
E = -(yh[w'O)--Sw"] f )  = - ( K ~  yh(a , f )2) .  ( 6 . 3 ~ )  

( h )  a 2 @ )  

The sign of the nonlinear velocity coefficient wl is positive for buoyant particles 
(with a positive) and negative for dense particles (with a negative). The magnitude 
of w1 is related principally to the non-uniformity of y .  The nonlinearity is marginally 
larger when the gap is widest at  the side (see figure 8). We recall that for particles 
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FIGURE 8. Dimensionless Burgers nonlinearity w1 v/agH2 cos 4 for monodisperse particles in a 

non-uniform annular gap with fractional offset E = 0.5 for different values of the rise velocity V .  

with a given vertical rise velocity W ,  the transverse component V as defined in (2.5 b) 
is proportional to sin#. Hence the nonlinearity w1 vanishes if either the borehole is 
horizontal (cos# = 0) or vertical (sing5 = 0). It is only in tilted boreholes that 
buoyant particles satisfy a Burgers equation. 

For gas bubbles with ag = lo4 mm s - ~  and with the flow specification ( 4 . 9 ~ 4  the 
dimensional factor in the formula (6.3b) for w1 can be estimated: 

agH2 cos # 
= 6.4 x lo5 mm s-l. 

V 

Thus, a dimensionless Burgers nonlinearity of magnitude 0.05 in figure 8 corresponds 
to a dimensional velocity correction 

3.2 x 1 0 4 ~ m m  8-1. (6.5) 

For example, the buoyancy effect associated with a gas volume fraction Fof only one 
part per thousand augments the effective gas speed up the borehole by 32 mm s-l. 

The first integral ( 5 . 6 ~ )  for a, f enables us to represent the shear dispersion 
coefficient E associated with velocity differences around the gap by &integrals : 

(6.6a) 

where E = ( ( h )  J 2 / y h ) .  (6.6b) 

The particle-weighted velocity differences are reduced by the upwards drift. So the 
dimensionless shear dispersion coefficient E tends to be decreased as V increases (see 
figure 9). The scaling for the shear dispersion associated with velocity differences 
across the gap is 
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FIGURE 9. Dimensionless longitudinal shear dispersion coefficient E associated with velocity 
differences around the non-uniform gap, for fractional offset E = 0.5 with different values of the 
particle rise velocity V .  
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For the flow specification ( 4 . 9 ~ 4 )  and with 0 = &, a dimensionless dispersion 
coefficient E = 0.1 in figure 9 corresponds to a dimensional shear dispersion 
coefficient 

E = lo5 mm2 s-l = 0.1 m2 s-’. (6.8) 

Similarly, a dimensionless dispersion coefficient 6 = 0.016 in figure 10 corresponds to 
a dimensional shear dispersion coefficient 

D = lo4 mm2 s-l = 0.01 m2 s-l. (6.9) 

E would be larger and D smaller if the minimum gap position 0 were displaced away 
from the bottom. We remark that on the timescale lo4 s for the drilling fluid to rise 
1 km the diffusive spread is about 4.5 x lo4 mm = 45 m. 

7. Solutions of the Burgers equation 

longitudinal dispersion equation (6.3 a) is written 

- 
If we combine m+yD$: )+E into a total dispersion coefficient Do, then the 

a,C+w, ca, c = Do a; C. 

a, C+ (wo+dwl C) a, c = D, a ; ~ .  

(7.1) 

(7.2) 

The factor d stems from the formal assumption that the ratio of diameter to axial 
length is small (of the order 8) .  In the remainder of this section the smallness of the 
nonlinear velocity correction will be accounted for via ( 5 . 3 ~ )  for w1 and any S factors 
will be suppressed. 

For small particle concentrations the evolution of C(Z, t )  will be the same as that for 
a linear diffusion equation. Hopf (1950) and Cole (1951) showed that even when F is 
not small, the nonlinearity can be eliminated. We define the concentration b: 

Back in the stationary unstretched axes, this equation becomes 

b(z, t )  = cexp - C(z’,t) dz’ . G0JF 1 (7.3) 

The integral implies that we are assuming that G tends to zero as z tends to plus 
infinity. Remarkably, the evolution of b is linear diffusive: 

a,b+w,a,b = Doazb. (7.4) 

So, it is much easier to  find a solution (numerical or analytical) for b than for C. To 
construct c we need to invert the transformation (7.3) : 

(7.5) 

The effect of the Burgers equation nonlinearity is acounted for in the quotient 
nonlinearity of this inversion formula (7.5). 

A classical example (Taylor 1910) which shows the possibility of a balance between 
nonlinearity and diffusion is 

b(z,t) = Cexp (-[Z-(Wo+iCwl)tI5w1/2Do), ( 7 . 6 ~ )  

q z , t )  = $31 -tanh([z-(~,+~~w1)t]~w1/4D0)). (7.6b) 

The positive constant, 5, characterizes both the amplitude and the abruptness of the 
concentration surge of buoyant particles. (In a blowout this tendency for a surge to  
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hold together is compounded by expansion effects.) For sinking particles the sign of 
the nonlinearity is reversed. With w1 negative the exact solution (7.6b) describes the 
flushing out of the borehole of an abrupt absence of particles. 

If we use the flow specification ( 4 . 9 a i )  with 

= 10-3, o = in, (7.7a, b )  

then the lengthscale of the concentration surge is 

2D,/(&ul) = 6250 mm = 6.25 m. (7.8) 
This is smaller than the diffusive spread estimated in the previous section. So the 
surge structure would be established in less than 1 km. The speed of the surge is 

wo + &.o, = 146 mm s-l (7.9) 

and is markedly greater than the bulk velocity = 100 mm s-'. 

8. Concluding remarks 
Although this paper focuses upon a particular flow geometry of direct concern to 

the oil drilling industry, much of the mathematical analysis and physical mechanisms 
are of more general applicability. The two essential ingredients for a Burgers 
concentration dispersion equation are particle drift across the flow and a longitudinal 
force on the flow proportional to the number density of particles. Here it is gravity 
that causes both the drift and the force. It is easy to envisage other tilted flow 
geometries where gravity will have the same two effects. Similarly, it is easy to 
envisage other mechanisms (centrifugal, chemical, electrical, magnetic, thermal) that 
can provide either the transverse drift or the longitudinal force or both (Lightfoot, 
Chiang & Noble 1981). 
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